
Fixed points in programming: datatypes and protocols.

Fixed points in programming: datatypes and
protocols.

J.R.B. Cockett

Department of Computer Science
University of Calgary

Alberta, Canada

robin@cpsc.ucalgary.ca

(work with Subashis Chakraborty)

14th Colloquiumfest Saskatoon: February 2014

Fixed points in programming: datatypes and protocols.

Where are we going?

1. Tensions from language design.

2. Datatypes deliver computation ...

3. Communication on a channel.

4. Polycategories and representability.

5. Communication on many channels.

6. Message passing.

7. Protocols.

Fixed points in programming: datatypes and protocols.

Where are we? Where should we be?

Tensions from language design

I Legacy or lean?

I Language or library?

I Domain or dominant?

I Formal or fun?

I Network or not work?

Fixed points in programming: datatypes and protocols.

Where are we? Where should we be?

Networks ...
In the 1970’s networks, parallel, and distributed computing arrived
and was going to solve everything!
Practitioners pushed back with “the fallacies”
(Joy, Lyon, Deutsch, Gosling):
I The network is reliable.
I Latency is zero.
I Bandwidth is infinite
I The network is secure.
I Topology doesn’t change.
I Transport cost is zero.
I The network is homogeneous.

Computing had blindly entered a new world of expectation and
connectedness!

There was no turning back ...

Fixed points in programming: datatypes and protocols.

Where are we? Where should we be?

Computing ...

I In the 1960’s computing power and memory was expensive ...
measurement: bits and operations per second.
One GFLOP cost US1.1 trillion.

I By 2000 memory was dirt cheap and processors powerful ...
measurement: moved from bits to gigabytes
One GFLOP cost US1000.

I By 2013 multicore (4 or 8 cpu) is common ...
measurement: moved to terabytes (32 bit addressing)
One GFLOP cost US0.75.

I By 2050 kilocore and gigacore will be common ...

Computing has blindly entered a new era of parallel power!

There is no turning back ...

Fixed points in programming: datatypes and protocols.

Where are we? Where should we be?

Implications for language design ...

Programming languages
need to support

Concurrent, Massively Parallel

and

Interactive Computing!

Fixed points in programming: datatypes and protocols.

Where are we? Where should we be?

Practice ahead of theory ...

I Where is the mathematics of processes, concurrency,
communication?

I Is this theory only develop in response to practice?

I Should theory simply be modelling practice?!!?

I Is there a need to develop new theory? ...
.... or is it just taking time to link existing theory and
practice?

Does mathematics have anything useful to say?

Fixed points in programming: datatypes and protocols.

Where are we? Where should we be?

A brief history of process semantics ...

I Petri nets, C. A. Petri (1962).

I Communicating Sequential Processes, C. A. R. Hoare (1978).

I Calculus of Communicating Processes, R. Milner (1979) [book
(1989)].

I Algebra of Communicating Processes (ACP), J. Bergstra and
J. W. Klop (1982).

I Robin Milner’s quest to find the “λ-calculus of concurrency”
produced the π-calculus with J. Parrow (1992) [book (1999)].

I Others: ambient calculus (L. Cardelli, A.D. Gordon), PEPA
(J. Hillston), the fusion calculus (J. Parrow and B. Victor),
the spy calculus (M. Abadi and A. Gordon), ...

Fixed points in programming: datatypes and protocols.

Where are we? Where should we be?

The complaint ...

What are the fundamental structures of concurrency?
We still don’t know!’

“Is this profusion a scandal of our subject: I used to think so
... now I am not so sure.”

Samson Abramsky (2005)

Fixed points in programming: datatypes and protocols.

Where are we? Where should we be?

The complaint

I No Church/Turing thesis for concurrency ...

I A tool kit: no unified theory ...

I Plasticity of definition, carvings in snow: no bedrock ...

I A profusion of syntax but no semantics ...

I Physics (quantum computing), biological computing, and
environmental modelling are at our gates: what do we have to
show?

Should we expect more than a tool kit?

I Tools are good: bisimulation, hiding, scope extrusion, ...

I The subject covers a wide range of phenomena ...

... of course we should expect more ...

Fixed points in programming: datatypes and protocols.

Where are we? Where should we be?

So what is a good process semantics?

_ _ _ _ _ _ _ _ _ _ _ _�

�

�

�
_ _ _ _ _ _ _ _ _ _ _ _

Programming language

_ _ _ _ _ _ _ _ _ _ _�

�

�

�_ _ _ _ _ _ _ _ _ _ _
Operational behavior

OO

Term logic

66

oo //
hh

((RRRRRRRRRRRRR
Categorical theory
55

uukkkkkkkkkkkkkkk

��

ii

Proof theory //

OO

_ _ _ _ _�

�

�

�_ _ _ _ _
Models

Fixed points in programming: datatypes and protocols.

Where are we? Where should we be?

So what is a good process semantics?

I Proof theory: behaviour of the free term model:
I Term construction
I Type inference and checking.
I Compositional behaviour from cut elimination.

I A categorical semantics:
I Universal constructs (properties versus structure).
I Rules of equality (local to support program transformations).
I Compositional semantics (modular program construction).
I Coherent framework (determines “feature” interactions).
I Interface to mathematics (models with different properties).
I Term logic = programming language.
I Operational semantics = (reasonably) efficient evaluation.

Fixed points in programming: datatypes and protocols.

Where are we? Where should we be?

So where are we?

CLAIM: The mathematical structures are there!!

... BUT the Computer Science is not!
... this is where the rubber hits the road!

... and the mathematical development is part of this!

Fixed points in programming: datatypes and protocols.

Datatypes deliver computation ...

2.

Datatypes deliver computation ...

(A basis for “strong functional programming”!)

Fixed points in programming: datatypes and protocols.

Datatypes deliver computation ...

Datatypes deliver computation

In mathematical settings computation may be delivered by
rewriting

... and a disciplined way of adding rewriting rules is to introduce
initial and final fixed points.

In the sequential world these are called datatypes ...

Datatypes deliver progressive computation ...
(i.e. essentially terminating).

Fixed points in programming: datatypes and protocols.

Datatypes deliver computation ...

Inductive datatypes
X a category and F : X −→ X an endofunctor. An inductive
datatype (or least fixed point) for F is an object µx .F (x) ∈ X
together with a map

consF : F (µx .F (x)) −→ µx .F (x)

satisfying the inductive axiom: Given Z ∈ X and a map g : F (Z)
−→ Z then there is a unique map {|g |}F , such that

F (µx .F (x))
consF //

F ({|g |}F)

��

µx .F (x)

{|g |}F

��
F (Z) g

// Z

commutes.

Fixed points in programming: datatypes and protocols.

Datatypes deliver computation ...

Coinductive datatypes (dual)
X a category and F : X −→ X an endofunctor. An coinductive
datatype (or greatest fixed point) for F is an object νx .F (x) ∈ X
together with a map

destF : νx .F (x) −→ F (µx .F (x))

such that the coinductive axiom holds: Given Z ∈ X and a map
g : Z −→ F (Z) then there is a unique map (|g |)F , such that

Z
g //

(|g |)F

��

F (Z)

F ((|g |)F)

��
µx .F (x)

destF
// µx .F (x)

commutes.

Fixed points in programming: datatypes and protocols.

Datatypes deliver computation ...

Proof rules for fixed points

The pure “Kozen rules” for fixed points are:

X ` F (µx .F (x))

X ` µx .F (x)

G (νy .G (y)) ` Y

νy .G (y) ` Y

F (X) ` X

µx .F (x) ` X

Y ` G (Y)

Y ` νy .G (y)

Fixed points in programming: datatypes and protocols.

Datatypes deliver computation ...

Proof rules for fixed points in inuitionistic logic

In intuitionistic logic want the Kozen rules to become:

Γ ` F (µx .F (x))

Γ ` µx .F (x)

Γ,F (X) ` X

Γ, µx .F (x) ` X etc.

where Γ is a “context”. To obtain this from the pure rules:

Z ,Z ⇒ X ` X
eval

F (Z × Z ⇒ X) ` F (X)
functor

Z ,F (Z ⇒ X) ` F (X)
strength

Z ,F (X) ` X

F (Z ⇒ X) ` Z ⇒ X

µx .F (x) ` Z ⇒ X

Z , µx .F (x) ` X

one needs a higher-order setting and strength of the functor.

Fixed points in programming: datatypes and protocols.

Datatypes deliver computation ...

Circular rules ...

The Kozen rules are not very convenient for cut-elimination or for
writing programs ...

To facilitate the description of evaluation we use a different (but
more complicated) equivalent form ...

... which is reminiscent of a general recursive program (but can be
type checked to ensure progress).

Fixed points in programming: datatypes and protocols.

Datatypes deliver computation ...

Inductive circular rule
A combinator: f : X −→ B

c[f] : F (X) −→ B

where
F (X)

c[x] !!DDDDDDDD

F (r) // F (X ′)

c[x ′]||yyyyyyyy

B

⇒ X

x
��????????
r // X ′

x ′~~~~~~~~~~

B

delivers a circular map µa.c[a] : µx .F (x) −→ B such that the
following diagram commutes

F (µx .F (x))
cons //

c[h]
%%JJJJJJJJJJ

µx .F (x)

h
{{wwwwwwwww

B

if and only if h = µa.c[a]. In particular consµa.c[a] = c[µa.c[a]].

Fixed points in programming: datatypes and protocols.

Datatypes deliver computation ...

Coinductive circular rule (dual)
Dually we have for coinductive datatypes the following circular
style definition. Given a combinator

B
f−−→ X

G (B) −−−→
c[f]

X
c[]

where B is a fixed object in X, there is a cocircular map
νb.c[b] : B −→ νx .G (x) such that

B

u

{{wwwwwwwww
c[u]

%%KKKKKKKKKK

νx .G (x)
dest

// G (νx .G (x))

commutes iff u = νb.c[b]. In particular (νb.c[b])dest = c[νb.c[b]].

See also Tarmo Uustalu and Varmo Vene (thesis).

Fixed points in programming: datatypes and protocols.

Datatypes deliver computation ...

A circular definition ...

This allows a natural style of programming ...

data list(A) → C = nil: 1 → C
cons: A× C → C

fold append : list(A), list(A) → list(A) =
x , y by x as

nil → y
cons(a, x ′) → cons(a, append(x ′, y))

Fixed points in programming: datatypes and protocols.

Datatypes deliver computation ...

The rewriting rules ...

append(nil, y)⇒ y

append(cons(a, x ′), y)⇒ cons(a, append(x ′, y))

This (together with high-order features) gives an expressive and
“useable” strong functional programming language.

... one has all the power of higher-order primitive recursion BUT
programs must now “show why they terminate”: in practice this
can make for inefficient algorithms

Pragmatic solution: warn the user when he defines a function
which cannot be type-inferred to terminate

Fixed points in programming: datatypes and protocols.

Communication on a channel

3.

Communication on a channel

(A bit of bedrock for concurrency!)

Fixed points in programming: datatypes and protocols.

Communication on a channel

Products and coproducts

I Abelian groups, suplattices, relations: A + B = A× B
(biproducts)

I Sets, topoi, cartesian closed categories, extensive and
distributive categories

I A + B = A t B (disjoint union)
I A× B (cartesian product)
I A× (B + C) ∼= (A× B) + (A× C)

In all these settings the product and coproducts satisfy some very
special properties!

Fixed points in programming: datatypes and protocols.

Communication on a channel

Products and coproducts

But what does ΣΠ(A) the category with free products and
coproducts generated by the category A look like?

Andre Joyal: Free bicomplete categories.
Cockett and Seely: The logic of sums and products ΣΠ

Fixed points in programming: datatypes and protocols.

Communication on a channel

Products

Y1

X
(gi)i

//

g1

77ooooooooooooooooooo

gn

''OOOOOOOOOOOOOOOOOO
∏

i Yi

Π1

??~~~~~~~~~~

Πn

��@@@@@@@@@@

...

YN

Πk(f); g = Πk(f ; g)
f ; (gi)i∈I = (f ; gi)i∈I

(gi)i∈I ; Πk(f) = gk ; f

where ∏
i Yi

Πk //

Πk (f)
!!BBBBBBBBB
Yk

f

��
Z

Πk(f) := Πk ; f
Πk = Πk(1Yk

)

Fixed points in programming: datatypes and protocols.

Communication on a channel

Coproducts

X1

q1
��??????????
g1

''OOOOOOOOOOOOOOOOOO

...
∐

i Xi 〈gi 〉
// Y

Xn

qn

??����������
gn

77oooooooooooooooooo

f ;qk(g) = qk(f ; g)
〈fj〉j∈J ; g = 〈fj ; g〉j∈J

qk(f); 〈gj〉j∈J = f ; gk

where

Xk
qk //
∐

j Yj

Z

f

OO

qk (f)

>>|||||||||

qk(f) := f ;qk

qk = qk(1Xk
)

Fixed points in programming: datatypes and protocols.

Communication on a channel

Interactions

X1

...

h11

//

h1m

��<<<<<<<<<<<<<<<<<< Y1

...

Xn

hn1

@@������������������

hnm
// Yn

gives
∐

i Xi
〈(hij)i 〉j=(〈hij 〉j)i //

∏
j Yj

and the basic equalities:

Πi (qj(f)) = qj(Πi (f)) Πk((gi)i) = (Πk(gi))i

qk(〈fj〉j) = 〈qk(fj)〉j

Fixed points in programming: datatypes and protocols.

Communication on a channel

Logic of products and coproducts

A `1A A
id

{Xj `fj Y }j∈J∐
j Xj `〈fj 〉j∈J Y

cotuple
{X `gi Yi}i∈I
X `(gi)i∈I

∏
i Yi

tuple

X `f Yk

X `qk (f)

∐
i∈I Yi

coproj
Xk `f Y∏

i∈I Xi `Πk (f) Y
proj

X `f Y Y `g Z

X `f ;g Z
cut

Fixed points in programming: datatypes and protocols.

Communication on a channel

Cut elimination

... is rewriting modulo equations:

f ; 1 +3 f
1; f +3 f

f ;qk(g) +3 qk(f ; g)
Πk(f); g +3 Πk(f ; g)
〈fi 〉i ; g +3 〈fi ; g〉i
f ; (gi)i +3 (f ; gi)i

qk(f); 〈gi 〉i +3 f ; gk
(fi)i ; Πk(g) +3 fk ; g

qk(〈fj〉j)
�� �� 〈qk(fj)〉j

Πk((fi)i)
�� �� (Πk(fi))i

Πi (qj(f))
�� �� qj(Πi (f))

(〈fij〉i)j
�� �� 〈(fij)j〉i

Fixed points in programming: datatypes and protocols.

Communication on a channel

Process reading ...

�k

?>=<89:;f

Output “k” on the right = qk(f)

k�

?>=<89:;g
Output “k” on the left = Πk(g)

4
����

>>>>

?>=<89:;f1 ?>=<89:;f2

Listen for input on the left = 〈f1, f2〉

N
||||

BBBB

?>=<89:;g1 ?>=<89:;g2

Listen for input on the right = (g1, g2)

Fixed points in programming: datatypes and protocols.

Communication on a channel

Process reading of a map ...

(A× B) + (A× C)
〈(Π1(1A),q1(Π2(1B))),(Π1(1A),q2(Π2(1C)))〉 // A× (B + C)

4
pppppppp

NNNNNNNN

N
�����

===== N
�����

=====

1� �1 1� �2

GFED@ABC1A 2� GFED@ABC1A 2�

GFED@ABC1B GFED@ABC1C

Fixed points in programming: datatypes and protocols.

Communication on a channel

Process reading of the identities ...

�k

4

�����
77777

?>=<89:;f ?>=<89:;g

=

4
����

7777

�k �k

?>=<89:;f ?>=<89:;g

N
����

::::

k� k�

?>=<89:;f ?>=<89:;g

=

k�

N

�����
;;;;;

?>=<89:;f ?>=<89:;g

�k

j�

?>=<89:;f

=

j�

�k

?>=<89:;f

4
uuuuuu

IIIIII

N

����
2222 N

����
2222

GFED@ABCf11
GFED@ABCf12

GFED@ABCf21
GFED@ABCf22

=

N

uuuuuu
IIIIII

4
����

2222 4
����

2222

GFED@ABCf11
GFED@ABCf21

GFED@ABCf12
GFED@ABCf22

Fixed points in programming: datatypes and protocols.

Communication on a channel

Slogan

The proof theory of products and coproducts

IS

the basic calculus of communication on a channel!!

Joyal: “... mathematics is saying something.”

Fixed points in programming: datatypes and protocols.

Communication on a channel

Different readings ...
TYPE CATEGORY PROOF PROCESS GAME

Type Object Proposition Protocol Game

Terms Map Proof Process Mediator

Substitute Compose Cut Communicate Compose

Variables Identities Axioms Relay Copy cat

Joyal and Santocanale used the reading of games (Blass) ...
Cockett and Seely used the reading of proofs and categories ...
Pastro used the reading as protocols and processes ...

... just products and coproducts ...

Fixed points in programming: datatypes and protocols.

Communication on a channel

History:

(1) Cockett and Seely, Finite sum-product logic, TAC 8, (2001)
Not everything was sorted out!! No decision procedure for
units ...

(2) Cockett and Santocanale, On the word problem for
ΣΠ-categories, and the properties of two-way communication.
CSL 2009.
Proposed a feasible but “intricate” procedure to decide
equality with units.

(3) Heijltjes, Proof nets for additive linear logic with units. Proc.
LICS 2011
(Awarded the LICS 2011 Kleene award for best student paper)
Gave a clean feasible decision procedure for the units.

Without units there is no finite communication!!

Fixed points in programming: datatypes and protocols.

Many channels: the multiplicatives

4.

Polycategories and representation

Fixed points in programming: datatypes and protocols.

Many channels: the multiplicatives

Processes connected to many channels

P

α1
UUUUUUUUUUUU

αmiiiiiiiiiiii

β1
iiiiiiiiiiii

βn UUUUUUUUUUUU

α1 : X1, . . . , αm : Xm `P β1 : Y1, . . . , βn : Yn

X1, ..,Xm,Y1, ...,Yn are protocols ...
These are types determine which events can happen next on each
channel (e.g. given by products and coproduct types).

A process can listen or output to any channel to which it is
attached. The process is the system and it communicates with its
environment.

Fixed points in programming: datatypes and protocols.

Many channels: the multiplicatives

Communication

Plugging processes together ...

P

α1
UUUUUUUUUUUU

αmiiiiiiiiiiii

β1
ccccccccccccccccccccccccccc

βn

ψ NNNNNNNNNNNNN

Q
γ1

γpddddddddddddddddddddddddddd

δ1
iiiiiiiiiiii

δq UUUUUUUUUUUU

The combined processes become a composite process with the
communication on ψ hidden.

Fixed points in programming: datatypes and protocols.

Many channels: the multiplicatives

Miscommunications ...
Plugging processes together in the wrong way can cause deadlock or

livelock ...

P

ECD@GF
α1=β1

αmiiiiiiiiiiii

βn UUUUUUUUUUUU

Don’t plug a process to itself..

P

α1
UUUUUUUUUUUU

α2iiiiiiiiiiii

β1=γ1

β2=γ2

Q

δ1
iiiiiiiiiiii

δ2 UUUUUUUUUUUU

Don’t connect two processes in two different ways ..

... the correctness criterion for linear logic ...

Fixed points in programming: datatypes and protocols.

Many channels: the multiplicatives

Polycategories
A polycategory P consists of the data

I objects: X1, . . . ,Y1, . . . ∈ P0

I polymaps: ∀m, n ∈ N a set

P(X1, . . . ,Xm ; Y1, . . . ,Yn)

I identities: for each X ∈ P0 a polymap 1X ∈ P(X ;X).
I composition (cut): A map

P(Γ; ∆1,X ,∆2)× P(Γ1,X , Γ2; ∆) //P(Γ1, Γ, Γ2; ∆1,∆,∆2)

where Γ1 or ∆1 is empty and Γ2 or ∆2 is empty.

such that identities are identities and cut satisfies associativity and
interchange.
A polycategory is symmetric in case P(σΓ; τ∆) = P(Γ; ∆) for
permutations σ and τ , and certain obvious coherence conditions
hold.

Fixed points in programming: datatypes and protocols.

Many channels: the multiplicatives

Polycategories

X1, . . . ,Xn `f Y1, . . . ,Ym

X1 Xn

f

Y1 Ym

···

···

Composition is modelled by the cut rule

Γ `f ∆, γ : Z γ : Z , Γ′ `g ∆

Γ, Γ′ `f ;γg ∆,∆′

Γ Γ′

f

g

∆ ∆′

γ

Composition must have identities (these are wires) ..

Fixed points in programming: datatypes and protocols.

Many channels: the multiplicatives

Polycategories

Composition must satisfy the interchange and associative laws

f

g h

α β

f

g

h

α
EE

EE

β
EE

EE

When polycategories are symmetric crossing wires are allowed.

Fixed points in programming: datatypes and protocols.

Many channels: the multiplicatives

Pure proof theory of cut-elimination
Symmetric polycategories are the categorical proof theory for cut-elimination.

A `1A A
id

Γ1,X1,X2, Γ2 ` Γ

Γ1,X2,X1, Γ2 ` Γ
exchange

Γ ` Γ1,X1,X2, Γ2

Γ ` Γ1,X2,X1, Γ2
exchange

Γ1 ` Γ2,X X ,∆1 ` ∆2

Γ1,∆1 ` Γ2,∆2
cut

Γ1 ` X , Γ2 ∆1,X ` ∆2

∆1, Γ1 ` ∆2, Γ2
cut

Γ ` X ∆1,X ,∆2 ` ∆

∆1, Γ,∆2 ` ∆
cut

Γ ` Γ1,X , Γ2 X ` ∆

Γ ` Γ1,∆, Γ2
cut

Fixed points in programming: datatypes and protocols.

Many channels: the multiplicatives

Representability
A polycategory is representable in case there are polynatural
equivalences

P(Γ1,X ,Y , Γ2; ∆)
r⊗
∼
// P(Γ1,X ⊗ Y , Γ2; ∆)

P(Γ1, Γ2; ∆)
r>
∼
// P(Γ1,>, Γ2; ∆)

P(Γ; ∆1,X ,Y ,∆2)
r⊕
∼
// P(Γ; ∆1,X ⊕ Y ,∆2)

P(Γ; ∆1,∆2)
r⊥
∼
// P(Γ; ∆1,⊥,∆2)

Replace the commas with “bundled” types ...

Polynatural means that the transformation is invariant under
cutting into the non-active position ...

Representability (Burroni, Hermida) simplifies coherence. In a
polycategory having tensors is a property not structure.

Fixed points in programming: datatypes and protocols.

Many channels: the multiplicatives

The multiplicatives
Representability can be presented by sequent calculus rules of
inference:

Γ1, Γ2 ` ∆

Γ1,>, Γ2 ` ∆
split > Γ ` ∆1,∆2

Γ ` ∆1,⊥,∆2
split ⊥

Γ1,A,B, Γ2 ` ∆

Γ1,A⊗ B, Γ2 ` ∆
split ⊗ Γ ` ∆1,A,B,∆2

Γ ` ∆1,A⊕ B,∆2
split ⊕

Γ `
Γ ` > fork > ` ∆

⊥ ` ∆
fork ⊥

Γ1 ` ∆1,A Γ2 ` B,∆2

Γ1, Γ2 ` ∆1,A⊗ B,∆2
fork ⊗

Γ1,A ` ∆1 Γ2,B ` ∆2

Γ1,A⊕ B, Γ2 ` ∆1,∆2
fork ⊕

Fixed points in programming: datatypes and protocols.

Many channels: the multiplicatives

Linear distribution ...

Here is a derivation of the linear distribution of ⊗ over ⊕:

B ` B C ` C
B ⊕ C ` B,C

A ` A B ` B
A,B ` A⊗ B

A,B ⊕ C ` A⊗ B,C

A⊗ (B ⊕ C) ` (A⊗ B)⊕ C

Fixed points in programming: datatypes and protocols.

Many channels: the multiplicatives

Linearly distributive categories
Representable polycategories correspond precisely to linearly distributive categories.

There are natural coherence requirements. A typical coherence
requirement is:

A⊗ (B ⊗ (C ⊕ D))

1⊗δL
��

a⊗
//

1⊗δL
��

(A⊗ B)⊗ (C ⊕ D))

δL

��

A⊗ ((B ⊗ C)⊕ D)

δL
��

(A⊗ (B ⊗ C))⊕ D
a⊗⊕1

// ((A⊗ B)⊗ C)⊕ D

Fixed points in programming: datatypes and protocols.

Many channels: the multiplicatives

Examples of linearly distributive categories

I A distributive lattice ∧ = ⊗, ∨ = ⊕ (*-autonomous=Boolean
lattice).

I A distributive category is a linearly distributive category (with
respect to the product and coproduct and the obvious linear
distribution) if and only if it is a poset.

I Any monoidal category is a degenerate linear distributive
category (“compact”: tensor = par).

I Any ∗-autonomous category is a linearly distributive category.

I A compact closed category is a degenerate ∗-autonomous
category (“compact”: tensor and par).

I (Joyal) Bicompletions of monoidal / linearly distributive
categories are linearly distributive (generally not
*-autonomous).

Fixed points in programming: datatypes and protocols.

Many channels: the multiplicatives

Units again .. this time multiplicative!

I If you are French you pretend they don’t exist! This is not
wise!!
... because even if you don’t mention them they are implicit.

I If you are Canadian they are the main interest!!

I A decision procedure for map/proof equality in the symmetric
case is known.

I The decision problem is PSPACE complete (Heijltjes and
Houston, manuscript 2014)...

Fixed points in programming: datatypes and protocols.

Many channels: the multiplicatives

Some history

(1) Barr ∗-autonomous categories LMS 752 (1979)

(2) Girard Linear logic TCS (1987)

(3) Seely Linear logic, *-autonomous categories and cofree
coalgebras (1989)

(4) Blute, Cockett, Seely, Trimble Natural deduction and
coherence for linearly distributive categories. JPAA (1996).

(5) Schneck Natural deduction and coherence for non-symmetric
linearly distributive categories. TAC (1999)

(6) Koh, Ong Explicit substitution internal languages for
autonomous and ∗-automonous categories. ENTCS 26 (1999)

(7) Lamarche, Strassburger Proof nets for multiplicative linear
logic with units LNCS 3210 (2004)

(8) Dominic Hughes Simple free star-autonomous categories and
full coherence JPPA (2012)

Fixed points in programming: datatypes and protocols.

Multiplicatives and additives

5.

Communication on many channels
(Mulipicatives and additives)

Fixed points in programming: datatypes and protocols.

Multiplicatives and additives

Products and coproducts for polycategories
There are polynatural equivalences

P(Γ1,X + Y , Γ2; ∆)
r+

∼
// P(Γ1,X , Γ2; ∆)× P(Γ1,Y , Γ2; ∆)

P(Γ1, 0, Γ2; ∆)
r0

∼
// 1

P(Γ; ∆1,X × Y ,∆2)
r×
∼
// P(Γ; ∆1,X ,∆2)× P(Γ; ∆1,Y ,∆2)

P(Γ; ∆1,∆2)
r1

∼
// 1

When P is representable we have distributive laws:

X⊗(A+B) ∼= (X⊗A)+(X⊗B) and (A×B)⊕Y ∼= (A⊕Y)×(B⊕Y).

e.g. P(Γ,X ⊗ A, Γ′; ∆)

P(Γ,X ,A, Γ′; ∆)

P(Γ,X ⊗ B, Γ′; ∆)

P(Γ,X ,B, Γ′; ∆)

P(Γ,X , (A + B), Γ′; ∆)

P(Γ,X ⊗ (A + B), Γ′; ∆)

Fixed points in programming: datatypes and protocols.

Multiplicatives and additives

Notation designed to shock ...

Additives Multiplicatives
Product Coproduct Tensor Par

Linear Logic (Girard) & ⊕ ⊗ O
Categorical (Cockett/Seely) ×/

∏
+/
∐

⊗ ⊕
Categorical (Egger) ∧ ∨ ? >

Vive la différence!!!
Girard notation aligned for the distributive law:

A⊗ (B ⊕ C) ≡ (A⊗ B)⊕ (A⊗ C)
∗-autonomous with“exponentials”

Categorical notion aligned along dualities:
+� × and ⊕� ⊗

not ∗-autonomous no exponentials

Fixed points in programming: datatypes and protocols.

Multiplicatives and additives

Poly-calculus of products and coproducts

A `1A A
id

{Γ1, α : Xj , Γ2 `Pj
Γ3}j

Γ1, α :
∐

j Xj , Γ2 `α〈Pj 〉j Γ3
cotuple

{Γ1 `Qi
Γ2, α : Yi , Γ3}i

Γ1 `α〈Qi 〉i Γ2, α :
∏

i Yi , Γ3
tuple

Γ1 `P Γ2, α : Yk , Γ3

Γ1 `α[k]·P Γ2, α :
∐

i Yi , Γ3
coproj

Γ1, α : Xk , Γ2 `Q Γ3

Γ1, α :
∏

i Xi , Γ2 `α[k]·Q Γ3
proj

Γ1 `P Γ2, α : X , Γ3 ∆1, α : X ,∆2 `Q ∆3

∆1, Γ1,∆2 `P;αQ Γ2,∆3, Γ3
cut

Fixed points in programming: datatypes and protocols.

Multiplicatives and additives

Cut elimination ...

... is rewriting modulo equations (but now you have to worry about

which channel!!!):

α 6= β

(α[k] · P) ;γ Q +3 α[k] · (P ;γ Q)
P ;γ (β[k] · Q) +3 β[k] · (P ;γ Q)

α〈Pi 〉i ;γ Q +3 α〈Pi ;γ Q〉i
P ;γ β〈Qj〉j +3 β〈P ;γ Qj〉j

γ[k] · P ;γ γ〈Qj〉j +3 P ;γ Qk

γ〈Pi 〉i ;γ γ[k] · Q +3 Pk ;γ Q
α〈β〈Pij〉j〉i

�� �� β〈α〈Pij〉i 〉j
α[k] · β〈Pj〉j

�� �� β〈α[k] · Pj〉j
α[k] · β[l] · P �� �� β[l] · α[k] · P

Fixed points in programming: datatypes and protocols.

Multiplicatives and additives

Forking and splitting

Γ1, α1 : X , α2 : Y , Γ2 `P Γ3

Γ1, α : X ⊗ Y , Γ2 `α〈α1,α2 7→P〉 Γ3

γ1 : Γ1 `P γ2 : Γ2, α1 : X δ1 : ∆1 `Q α2 : Y , δ2 : ∆2

γ1 : Γ1, δ1 : ∆1 `
α

〈
α1 | γ1, γ2 7→ P
α2 | δ1, δ2 7→ Q

〉 γ2 : Γ2, α : X ⊗ Y , δ2 : ∆2

Program syntax:

α〈α1, α2 7→ P〉 ≡ split α into (α1, α2) in P

α

〈
α1 | γ1, γ2 7→ P
α2 | δ1, δ2 7→ Q

〉
≡ fork α as

α1 with γ1, γ2 7→ P
α2 with δ1, δ2 7→ Q

Fixed points in programming: datatypes and protocols.

Multiplicatives and additives

More rewrites and identities

I γ

〈
α | Λ 7→ f
β | Φ 7→ g

〉
;γ γ〈(α, β) 7→ h〉 +3 g ;β (f ;α h))

I α

〈 α1 | Λ1 7→ f

α2 | Λ2 7→ β

(
a1 7→ g1
a2 7→ g2

) 〉
�� ��

β

 a1 7→ α

〈
α1 | Λ1 7→ f
α2 | Λ2 7→ g1

〉
a2 7→ α

〈
α1 | Λ1 7→ f
α2 | Λ2 7→ g2

〉


There are more identities. See:
Cockett and Pastro, A language for multiplicative-additive linear
logic, ENTCS, 2005.

Fixed points in programming: datatypes and protocols.

Multiplicatives and additives

Some history

The multiplicative-additive fragment has map equality decidable.
The complexity of deciding equality is PSPACE complete.

(1) The problem was first explored in:
Girard Proof-nets for additives, manuscript, 1994.

(2) The “unit-free” case was handled very neatly by:
Hughes and Glabbeek, Proof nets for unit-free
multiplicative-additive linear logic, LICS 2003.

(3) A solution for the case with all units was described in:
Cockett and Pastro, A language for multiplicative-additive
linear logic, ENTCS, 2005.
However, the procedure was exponential and no attempt to
analyze the complexity was made.

Fixed points in programming: datatypes and protocols.

Multiplicatives and additives

Where are we?

REMARKABLY:

almost 1

NO CHOICES HAVE BEEN MADE!!

... everything is free and canonical ...

The initial setting for concurrency is just MALL ...

1... we chose symmetry for the polycategory!

Fixed points in programming: datatypes and protocols.

Message passing

6.

Message passing

Key feature of concurrency!

Fixed points in programming: datatypes and protocols.

Message passing

Message passing

A two-tier logic:

I The logic of messages: the sequential world of computation
(e.g. Cartesian closed category (CCC) with datatypes)

I The logic of message passing: the concurrent world of
computation
(e.g. Linearly distributive category (LDC) with protocols)

Categorically the sequential world acts on the concurrent world

... that is it is a linear actegory ...

Fixed points in programming: datatypes and protocols.

Message passing

Linear actegory

I A cartesian C closed category (minimally with coproducts) to
represent the sequential world

I A linearly distributive category L (minimally with products
and coproducts) to represent the concurrent world

I Two actions:
◦ : C× L −→ L and • : Cop × L −→ L so that

(A× B) ◦ L ∼= A ◦ (B ◦ L) and (A× B) • L ∼= A • (B • L)
with obvious coherences.

I A • (putting out a message on the left) is left adjoint to A ◦
(putting out a message on the right):

X −→ A ◦ Y
A • X −→ Y

Fixed points in programming: datatypes and protocols.

Message passing

Sequential and concurrent worlds

The proof theory:

(A) Sequential sequent:
Ψ −→ A

where Ψ is a sequential context - a list of types.

(B) Concurrent sequent:
Ψ | Γ ` ∆

I Ψ is the sequential context (a sequence of types)
I Γ and ∆ are the concurrent contexts (a sequence of protocols)

Fixed points in programming: datatypes and protocols.

Message passing

Message passing rules

x :A,Ψ | α::X , Γ ` ∆

Ψ | α::A ◦ X , Γ ` ∆ get x on α

x :A,Ψ | Γ ` α::Y ,∆

Ψ | Γ ` α::A • Y ,∆

Ψ −→ t:A Ψ | α::X , Γ ` ∆

Ψ | α::A • X , Γ ` ∆ put t on α

Ψ −→ t:A Ψ | Γ ` Y ,∆

Ψ | Γ ` α::A ◦ Y ,∆

Programs do not distinguish “put”/“get” on the left or right ...
The adjunction guarantees they are equivalent ...

BUT THE TYPES ARE DIFFERENT!!!
The type depends on whether a channel has an “input polarity”
(channel on left) or an “output polarity” (channel on right).

Fixed points in programming: datatypes and protocols.

Message passing

Why polarities?

A communication channel attached to a process can be viewed two
ways:

A. From the processes perspective ...

B. From the external world (or environments) perspective ...

These are dual. A process must specify how it views its channels:

Output Polarity = Process Perspective

Input Polarity = Environment perspective

Fixed points in programming: datatypes and protocols.

Message passing

Message passing rules
Augmenting multiplicative rules with sequential contexts:

Ψ | Γ1, Γ2 ` ∆

Ψ | Γ1,>, Γ2 ` ∆
split >

Ψ | Γ ` ∆1,∆2

Ψ | Γ ` ∆1,⊥,∆2
split ⊥

Ψ | Γ1,A,B, Γ2 ` ∆

Ψ | Γ1,A⊗ B, Γ2 ` ∆
split ⊗

Ψ | Γ ` ∆1,A,B,∆2

Ψ | Γ ` ∆1,A⊕ B,∆2
split ⊕

Γ `
Γ ` > fork > ` ∆

⊥ ` ∆
fork ⊥

Ψ | Γ1 ` ∆1,A Ψ | Γ2 ` B,∆2

Ψ | Γ1, Γ2 ` ∆1,A⊗ B,∆2
fork ⊗

Ψ | Γ1,A ` ∆1 Ψ | Γ2,B ` ∆2

Ψ | Γ1,A⊕ B, Γ2 ` ∆1,∆2
fork ⊕

Fixed points in programming: datatypes and protocols.

Message passing

Message passing rules

Augmenting with sequential context is straightforward ... mostly!

Significantly the sequential coproduct interacts with the concurrent
world allowing sequential control to have concurrent effect:

Ψ,A | Γ ` ∆ Ψ,A | Γ ` ∆

Ψ,A + B | Γ ` ∆

Program construct:

case t of

b0(x0) 7→ P1

b1(x1) 7→ P2

Fixed points in programming: datatypes and protocols.

Message passing

Diffie-Hellman key exchange:

α

LLLLLLLLLLLLL

ALICE
γ

β

rrrrrrrrrrrrrr

Given two public keys k1 and k2, Alice gets a secret key, a, on
secure channel α. Does a key exchange on insecure channel γ
talking to Bob! Gets a plain text message on (secure) channel β,
encrypts it with now agreed key; sends this on the insecure channel
γ to Bob

Fixed points in programming: datatypes and protocols.

Message passing

Diffie-Hellman key exchange:

Alice :: (Key,Key) Key • >,Msg • > ⇒ Key • (Key ◦ (cMsg • >))
Alice (k1, k2) α, β ⇒ γ

get a on α
put modk1(ka2) on γ
get b on γ
get m on β
put encode(m,modk1(ba)) on γ
close α
close β
end γ

Fixed points in programming: datatypes and protocols.

Message passing

A Reference:

Cockett and Pastro
The logic of message passing
Science of computer programming 74 (2009) 498-533

Proof theory

poly actegory
oo //

ff

&&NNNNNNNNNNN

Category theory

linear actegory
77

wwooooooooooo

term calculus

message passing

(Lots of history for message passing!!)

Fixed points in programming: datatypes and protocols.

protocols

6.

Protocols

... for interactions continuing through time ...

Fixed points in programming: datatypes and protocols.

protocols

Protocols

So far we have only introduced basic protocols using:

(a) products

(b) coproducts

(c) message passing: binding messages to channels.

These allow the modelling of finite interactions.

For REAL programming need sophisticated protocols which are
possibly infinite in time ...

These can be delivered through fixed points.

Fixed points in programming: datatypes and protocols.

protocols

Protocols and fixed points

Initial/final datatypes
in the concurrent world

=

(categorical) fixed points
in the concurrent world

protocols!

There are two formulations:

I Lambek style datatypes: the fixed point formulation of
inductive and coinductive datatypes.

I Mendler style datatypes (Vene, Uustalu) and circular style
datatypes (Santocanale).

... for polycategories (without negation) only the second
formulation works!

Fixed points in programming: datatypes and protocols.

protocols

Circular rules for polycategories

Given functors P and Q here are the circular rules for a
polycategory:

Γ ` ∆,P(µx .P(x)),∆′

Γ ` ∆, µx .P(x),∆′
µ-Cons

Γ,Q(νx .Q(x)), Γ′ `A ∆

Γ, νx .Q(x), Γ′ ` ∆
ν-Cons

X = µx .P(x) | Γ,X , Γ′ `X ∆

...
Γ,P(X), Γ′ ` ∆

Γ, µx .P(x), Γ′ ` ∆

X = νx .Q(x) | Γ `X ∆,X ,∆′

...
Γ ` ∆,Q(X),∆′

Γ ` ∆, νx .Q(x),∆′

Fixed points in programming: datatypes and protocols.

protocols

Expressiveness of protocols

Adding datatypes increases expressiveness dramatically!
One can defne the Burroni natural numbers by:

N(A) = µX .A + X

Having the Burroni natural numbers means:

I All primitive recursive functions on the natural numbers are
present (Pare and Roman)!

I SO the decision problem for equality of maps is immediately
undecideable.

Fixed points in programming: datatypes and protocols.

protocols

Programming with protocols

protocol Talk(A,B) ⇒ $C
#talk:: put(A) (get(B) $C) ⇒ $C

–(initial fixed point µx .A • (B ◦ x))

drive
duplicator::Talk(A,B*B) ⇒ Talk(A,B), Talk(A,B)
duplicator:: α ⇒ β, γ by α =

#talk:
get x on α
put #talk on β ; put #talk on γ
put x on β ; put x on γ
get y1 on β ; get y2 on γ
put (y1, y2) on α
call duplicator(α ⇒ β, γ)

Fixed points in programming: datatypes and protocols.

protocols

Memory cell ... mutable memory

1 protocol Memory (a) ⇒ $C =
2 #rcv :: put a $C ⇒ $C
3 #snd :: get a $C ⇒ $C

4 drive
5 Memorycell :: (a) Memory (a) ⇒
6 Memorycell (n) ch ⇒ by ch =
7 #rcv: get a on ch. call Memorycell (a) ch ⇒
8 #snd: put n on ch; call Memorycell (n) ch ⇒

Fixed points in programming: datatypes and protocols.

protocols

Reconfiguring ... memory locking
1 protocol Talker (A) ⇒ $C =
2 #talk:: put A get A $C ⇒ $C
3 protocol Passer $M ⇒ $C =
4 #pass :: ($M (+) (Neg($M) (x) $C)) ⇒ $C
5 drive
6 P1 :: () Passer (Memory (A)), Talker (A) ⇒ Memory (A)
7 P1 c1,in2 ⇒ c2 by c1=
8 #pass: match in2 as
9 #talk : get x on in2.
10 #snd on c2; get y on c2. #rcv on c2
11 put x on c2; put y on in2
13 fork c1 as
14 x1 with c2 . x1==c2
15 x2 with in2 . split x2 into (nm, x3). plug on x1
16 P1 x3, in2 ⇒ x1 to Neg x1 == nm

Fixed points in programming: datatypes and protocols.

protocols

Reconfiguring ... memory locking

17 drive
18 P2 :: () Talker (A) ⇒ Passer (Memory (A))
19 P2 in1 ⇒ c by in1=
20 #talk : get x on in1.
21 #pass on c;
22 split c into (m, x4).
23 #snd on m
24 get y on m. put y on in1
25 #rcv on m; put x on m
26 fork x4 as
27 nm with m. (Neg(m)==nm)
28 x5 with in1. call P2 in1⇒ x5

Fixed points in programming: datatypes and protocols.

Conclusions ...

Conclusions ...

Was this carving in snow!!???

I Logic of products and coproducts precisely describes
communication on a channel.

I Polycategories (the logic of cut) and additives model
communication on many channels.

I Multiplicatives given by representability.

I Messages determined by (adjoint action).

I Protocols given by datatypes.

I There was no choice!!!!

Fixed points in programming: datatypes and protocols.

Conclusions ...

Conclusions ..

Linearly actegories provide a semantics of concurrency:

I communication on channels

I message passing

I fixed points give sophisticated protocols.

AND ... non-deterministic semantics for distributed computing
obtained by compacting features (e.g tensor = par)?

Fixed points in programming: datatypes and protocols.

Conclusions ...

Conclusions ...

Mathematics has something to say on the semantics of
concurrency ...

... the mathematics involved is (largely) available ...

... the problem is to deploy it in Computer Science!!!

	Where are we? Where should we be?
	Datatypes deliver computation ...
	Communication on a channel
	Many channels: the multiplicatives
	Multiplicatives and additives
	Message passing
	protocols
	Conclusions ...

